Dublin, Aug. 31, 2020 (GLOBE NEWSWIRE) -- The "Automotive OTA Research Report, 2019-2020" report has been added to ResearchAndMarkets.com's offering.
Against all odds, controversial Tesla and NIO were eventually out of the woods. What they live on is FOTA (Firmware-over-the-air). Upgrading software and hardware provides new experience for car owners, making them more satisfied and very loyal.
Even nowadays, few vehicle models enable FOTA, really a hard nut to crack.
Considering safety and FOTA challenges, traditional automakers mostly choose to tap into vehicle system SOTA (Software-over-the-air) and act prudently in FOTA promotion. Through the lens of a typical FOTA flow, realizing FOTA needs E/E architecture disruption, and the support of new technologies like automotive Ethernet, cyber security, intelligent gateway, great computing power, and large memory.
Conventional OEMs have made slow progress in FOTA development over the past several years. Yet they took a big step forward in 2019. It can be seen from the table below that there is a gap between main OEMs and Tesla. Success of Tesla Model 3 weighs so heavily on traditional automakers that they are highly endangered except sweating for rapid transformation.
VW is the most aggressive among OEMs, while its counterparts are also working hard. The race to roll out intelligent gateway chip in early 2020 is a reflection of OEM's eager hoping to enable FOTA as early as possible just as Tesla has done.
Installation of SOTA easier to realize is soaring in both volume and rate. In 2019, 3.838 million passenger cars, or 19% of the total, were provided with SOTA, jumping by 60.6% compared with 2.39 million units, or 11.8% of the total in 2018, according to the author.
Among typical OEMs, GM leads in OTA capability. Its new-generation electronic architecture enables FOTA updates on its ICE models, which means OTA is available to recalibrate or upgrade engine and transmission control modules, vehicle communication system, entertainment system, driving control and body control ECU at a later stage.
In 2020, Buick's latest interconnection system, eConnect3.0 enables OTA updates of 9 major models such as OnStar module, IVI system, intelligent driving control module, body control module, and iBooster brake booster.
In 2020, the latest Cadillac CT5 model will pack GM's new electronic architecture. CT5 allows OTA updates of more than 30 vehicle control modules including software modules (e.g., IVI and smart connectivity) and firmware electronic modules (e.g., powertrain, chassis and electrical control).
GM plans to apply its next-generation E/E architecture to most of its car lineups before 2023.
Chinese companies that excel in application layer innovation already make plenty of OTA micro-innovations. Examples include SAIC providing personalized OTA -- DOTA, and BYD and XPENG Motors both offering high temperature disinfection capability enabled by OTA updates.
In April 2020, BYD announced its new models like Tang added with high temperature disinfection capability enabled by OTA updates. This capability is not simple upgrade and introduction but involves a complete set of OTA-based working logic of multiple ECUs (e.g., multimedia, air-conditioner controller and PTC heater) in a safe way.
Key Topics Covered
1. Overview of Automotive OTA Industry
1.1 Concept of OTA and Technologies
1.1.1 Definition of OTA
1.1.2 Difference between SOTA and FOTA
1.1.3 Basic Architecture of Automotive OTA
1.1.4 Automotive Software Development Process in OTA Mode
1.1.5 Upgrade Process of Automotive OTA
1.1.6 Transmission Mode of Automotive OTA
1.1.7 Key Technologies on Automotive OTA
1.2 Role of OTA and Challenges
1.2.1 Main Benefits of Automotive OTA
1.2.2 Remote Status Monitoring, Diagnosis and Maintenance
1.2.3 OTA Optimizes the Vehicle Development Process
1.2.4 Remote Diagnosis and Predictive Diagnosis
1.2.5 Major Difficulties in Automotive OTA Use
1.3 OTA Industry Chain
1.3.1 Automotive OTA Industry Chain Structure
1.3.2 Main Business Modes of Automotive OTA
1.3.3 OTA Layout of Major Enterprises: Independent Suppliers
1.3.4 OTA Layout of Major Enterprises: Tier1 Suppliers
1.3.5 OTA Layout of Major Enterprises: OTA Customers of Tier 1 Suppliers
1.3.6 Vehicle Models with OTA
2. Independent OTA Technology Providers and Solutions
2.1 Harman
2.1.1 Profile
2.1.2 OTA and Ignite Cloud Platform
2.1.3 OTA Development Course
2.1.4 Remote Vehicle Updating Service
2.1.5 OTA Solution and Latest Features
2.1.6 OTA Business Dynamic
2.1.7 Application Case (1)
2.1.8 Application Case (2)
2.2 Excelfore
2.3 Airbiquity
2.4 Windriver
2.5 ABUP
2.6 Redstone
2.7 CAROTA
3. OTA Business of Tier 1 Suppliers
3.1 Bosch
3.1.1 OTA Business Layout
3.1.2 OTA Solution
3.1.3 OTA Solution Charge Standard
3.1.4 FOTA Solution
3.1.5 OTA Software Upgrade Management Program
3.1.6 Telematics Service Architecture
3.1.7 OTA Security Solution
3.1.8 OTA Technology Roadmap
3.1.9 Applied Scenario
3.1.10 Partners and OTA Business Dynamic
3.2 Continental
3.3 Aptiv
3.4 ZF
3.5 Denso
3.6 Faurecia
3.7 Banma
3.8 Neusoft
3.9 Desay SV
3.10 Pateo
3.11 Joyson Electronics
3.12 ThunderSoft
4. OTA Features and Layout of Major Foreign Automakers
4.1 Tesla
4.1.1 Vehicle Models Supported and Technical Features of OTA
4.1.2 Main Steps of OTA Upgrade
4.1.3 Upgrade History of OTA
4.1.4 Upgrade of OTA, 2019 -2020
4.1.5 Planning for Vehicle Models
4.1.6 OTA Fee Mode
4.2 General Motors
4.3 Ford
4.4 Toyota
4.5 Honda
4.6 Hyundai
4.7 Volkswagen
4.8 BMW
4.9 Daimler
4.10 Volvo
4.11 OTA Deployment of Major Foreign Automakers
5. OTA Features and Layout of Major Chinese Automakers
5.1 SAIC
5.1.1 Vehicle Models Supported and Technical Features of OTA
5.1.2 Upgrade History of OTA
5.1.3 OTA Technology Layout
5.2 Geely
5.3 GAC
5.4 Changan Automobile
5.5 BYD
5.6 BAIC BJEV
5.7 NextEV
5.8 XPeng
5.9 WM Motor
5.10 Leading Ideal
5.11 FAW
5.12 Great Wall Motor
5.13 Dongfeng Motor
5.14 Chery
5.15 OTA Deployment of Major Automakers in China
6. Development Trend of Automotive OTA
6.1 OTA and Other New Automotive Technologies
6.1.1 OTA and E/E Architecture
6.1.2 OTA and Automotive Chip
6.1.3 OTA and Automotive Ethernet
6.1.4 OTA and Gateway
6.1.5 Other Requirements of FOTA
6.2 OTA Application Case
6.3 OTA Standards and Market
6.3.1 OTA Regulatory Policy Desires to Be Improved
6.3.2 OTA Specification Timelines in Major Countries
6.3.3 China Automotive OTA Scale, 2018-2025E
6.3.4 Global Automotive OTA Scale, 2020-2025E
For more information about this report visit https://www.researchandmarkets.com/r/3hk6ju
Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.