Global and China Autonomous Heavy Truck Industry Report, 2020-2021 with Focus on Commercial Vehicle Platooning and their Functions


Dublin, Aug. 18, 2021 (GLOBE NEWSWIRE) -- The "Global and China Autonomous Heavy Truck Industry Report, 2020-2021" report has been added to ResearchAndMarkets.com's offering.

Autonomous heavy truck research: front runners first going public

Our Autonomous Heavy Truck Industry Report, 2020-2021 carries out research into highway scenario-oriented autonomous heavy truck industry, including OEMs and autonomous driving solution providers inside and outside China.

Several autonomous heavy truck companies try to list their shares for financing.

The surging road freight volume and a widening gap in demand for truck drivers, promote the financing boom of self-driving heavy truck industry, and accelerate the R&D of related products and technology landing.

According to incomplete statistics, several autonomous heavy truck solution providers at home and abroad have closed a total of at least 16 funding rounds in the most recent year (August 2020 to August 2021). Examples include PlusAI and Inceptio Technology, two Chinese firms which have raised over USD800 million in all in their recent several funding rounds.

In the meanwhile, some solution providers which suffered sustained losses, and high input and low output, have started resorting to IPO for raising more funds. On April 15, 2021, TuSimple went public on Nasdaq, becoming the world's first listed company in autonomous driving field. And then a few other autonomous heavy truck solution providers announced listing in the US as special purpose acquisition companies (SPAC).

The LiDAR + camera + radar fusion solutions have become mainstream.

Most providers adopt the LiDAR + camera + radar fusion solutions combined with HD map and high-precision positioning, which enable their heavy trucks to drive themselves. Some solution providers like Embark use hybrid LiDAR solutions, that is, the combination of solid-state and mechanical LiDARs enables omnidirectional depth perception of the surroundings of a vehicle.

The time that mainstream solution providers inside and outside China are expected to launch the technology is relatively consistent. In the case of loose policies, autonomous heavy trucks will come into service on highways between 2023 and 2024.

Cooperation modes of autonomous heavy truck industry

Quite a few heavy truck OEMs and logistics companies race to land on highway scenarios in addition to capital betting on autonomous heavy trucks.

The highway transportation scenario-oriented autonomous heavy truck ecosystem accommodates autonomous heavy truck solution providers, heavy truck manufacturers and logistics transport service providers, which work together to propel commercialization of autonomous heavy trucks. As concerns research and development, solution providers and heavy truck manufacturers jointly develop L4 autonomous heavy trucks based on OEM or AM vehicle models. With regard to commercial operation, solution providers partner with logistics transport service providers on commercial operation and actual freight transport test of autonomous heavy trucks.

In terms of partnerships, autonomous heavy truck solution providers often team up with OEMs, co-developing L4 autonomous heavy trucks based on flagship models in OEM or AM market. Foreign autonomous heavy truck companies develop autonomous driving often under the leadership of their group companies, which means sub-brands of these group companies build technological cooperation with solution providers. For example, Traton under Volkswagen formed a global partnership with TuSimple to jointly develop L4 autonomous driving technology and apply to Volkswagen's brands like SCANIA and MAN.

Development trends of autonomous heavy trucks

Trend 1:

To achieve the goal of "emissions peak in 2030, carbon neutrality in 2060", the power source of autonomous heavy trucks will shift from diesel to low or zero carbon energy like natural gas and hydrogen.

Trend 2:

Platooning technology is being reviewed. In January 2019, Daimler Trucks held a contrary opinion on platooning. After thousands of miles of testing, Daimler has come to the conclusion that truck platooning delivers low economic benefits and has natural defects such as needing a driver, so it will end development of the technology and turn to L4 autonomous heavy trucks. Also, what impacts the actual use of platooning will put on the normal traffic has yet to be verified in real road tests.

Key Topics Covered:

1 Overview of Autonomous Heavy Truck Industry
1.1 Overview of Autonomous Heavy Truck
1.1.1 Classification of Trucks
1.1.2 Necessity of Autonomous Heavy Truck
1.1.3 Advantages of Automated Driving Technology for Autonomous Heavy Trucks
1.1.4 Status Quo of Autonomous Heavy Truck Companies
1.1.5 Levels of Autonomous Heavy Trucks
1.1.6 Functional Characteristics of Autonomous Heavy Trucks at Different Levels
1.2 Truck Autonomous Driving Technologies
1.2.1 Typical Application Scenarios and Technologies of Autonomous Truck
1.2.2 Typical Application Scenarios and Technical Solutions of Autonomous Heavy Truck
1.2.3 Key Technologies Needed by Autonomous Heavy Truck
1.2.4 Reference Architecture of Autonomous Heavy Truck
1.2.5 Evolution Route of Autonomous Heavy Truck
1.3 Commercial Vehicle Autonomous Driving and Regulations
1.3.1 Autonomous Heavy Truck Policies of Major Foreign Countries
1.3.2 China's National Policies Concerning Autonomous Heavy Trucks
1.3.3 Local Policies for Autonomous Heavy Truck Testing in China
1.3.4 Development Roadmap of Autonomous Truck in China
1.3.5 Application of Autonomous Heavy Truck Test License in China
1.4 Challenges in Commercial Vehicle Autonomous Driving and Ancillary Facilities
1.4.1 Challenges in Commercial Vehicle Autonomous Driving
1.4.2 Challenge: Acceptance of Autonomous Commercial Vehicles by Industries, Drivers and the Public
1.4.3 Challenges in Autonomous Trucks and Their Impacts
1.4.4 The Impact of Autonomous Driving on Stakeholders in Truck Industry
1.4.5 Autonomous Commercial Vehicles Need Relevant Infrastructures
1.4.6 Levels of Infrastructures (Roads) for Autonomous Driving
1.5 F Autonomous Truck Market Size
1.5.1 Global Autonomous Truck Market Size
1.5.2 China's Autonomous Truck Market Size

2 Commercial Vehicle Platooning
2.1 Overview of Truck Platooning
2.1.1 Key Components of Truck Platooning and Their Functions
2.1.2 Development Course of Truck Platooning Technology
2.1.3 Value of Truck Platooning
2.1.4 Tested Fuel Consumption Reduction by Truck Platooning
2.1.5 Global Development of Truck Platooning
2.1.6 Global Truck Platooning Projects, 2018-2020
2.1.7 Comparison of Some Truck Platooning Projects
2.1.8 Development History of Truck Platooning
2.1.9 Truck Platooning Patents
2.2 Status Quo of Truck Platooning in Europe
2.2.1 Typical Projects
2.2.2 Development Roadmap
2.2.3 European Truck Platooning Challenge (ETPC)
2.2.4 Aurora Borealis Project
2.2.5 Truck Platooning Test in Germany
2.2.6 Levels of Truck Platooning in Europe
2.3 Status Quo of Truck Platooning in United States
2.3.1 Overview
2.3.2 Truck Platooning Projects
2.3.3 Truck Platooning Test
2.3.4 Truck Platooning Regulations of Each State
2.4 Status Quo of Truck Platooning in Japan
2.4.1 Players
2.4.2 Development Route
2.4.3 Truck Platooning Projects
2.4.4 Overview of Truck Platooning
2.4.5 Truck Platooning Solutions
2.5 Status Quo of Truck Platooning in China
2.5.1 Typical Truck Platooning Projects in China, 2018
2.5.2 Cainiao's Autonomous Truck Platooning Solutions
2.5.3 Large-Scale Open Verification Testing of the First Commercial Vehicle Platooning Standard in China
2.5.4 Demonstration of CVIS-based Autonomous Platooning on Beijing-Chongli Expressway
2.6 Status Quo of Truck Platooning in South Korea
2.6.1 Overview of Truck Platooning Projects
2.6.2 Truck Platooning Test

3 Foreign Autonomous Heavy Truck Solution Providers
3.1 Embark
3.2 Aurora
3.3 Waymo
3.4 Kodiak Robotics
3.5 Einride
3.6 Summary of Foreign Solution Providers

4 Chinese Autonomous Heavy Truck Solution Providers
4.1 CiDi: Highway + Port + Mine
4.2 TuSimple: Highway + Port
4.3 Trunk Technology: Port + Highway
4.4 PlusAI: Highway
4.5 Inceptio Technology: Highway
4.6 Hong Jing Drive: Highway
4.7 Pony.ai
4.8 Summary of Chinese Solution Providers

5 Autonomous Heavy Truck Layout of Foreign OEMs
5.1 Scania
5.2 MAN
5.3 Volvo
5.4 Daimler
5.5 PACCAR
5.6 Hino
5.7 Summary of Foreign OEMs

6 Autonomous Heavy Truck Layout of Chinese OEMs
6.1 Foton
6.2 Dongfeng Trucks
6.3 Sinotruk
6.4 FAW Jiefang
6.5 SAIC-IVECO Hongyan
6.6 Beiben Trucks
6.7 Shaanxi Automobile
6.8 Summary of Chinese OEMs

For more information about this report visit https://www.researchandmarkets.com/r/7dsw34

 

Contact Data