Global Silicon Carbide Semiconductor Devices Market Report 2023: Benefits of the Compound or Silicon Carbide Semiconductors Over Silicon-Based Technology Drives Adoption

Dublin, Feb. 28, 2023 (GLOBE NEWSWIRE) -- The "Global Silicon Carbide Semiconductor Devices Market Size, Share & Industry Trends Analysis Report By Product, By End Use, By Wafer Size, By Component, By Regional Outlook and Forecast, 2022-2028" report has been added to's offering.

The Global Silicon Carbide Semiconductor Devices Market size is expected to reach $5.2 billion by 2028, rising at a market growth of 20.3% CAGR during the forecast period.

A semiconductor created by combining silicon with carbon is known as silicon carbide. SiC semiconductors can function in harsh environments owing to their hardness, which is similar to a diamond. Furthermore, silicon carbide has advantages over conventional silicon semiconductors in the market for power semiconductors, including a larger breakdown electric field strength, lower thermal expansion, a wider band gap, and chemical reaction resistance.

In comparison to a silicon power semiconductor, silicon carbide electrons need three times as much energy to go to the conduction band from the conduction band. SiC-based electrical devices can endure higher temperatures and voltages due to this characteristic than their silicon-based counterparts. They also carry a lot more current, nearly five times as much as their silicon equivalents, so they provide lower ON resistance and decrease switching loss, which reduces power loss.

Research projects are focused on using silicon carbide (SiC) semiconductor devices in automobile powertrains. Nevertheless, it has progressively become a practical alternative due to recent improvements. For instance, Tesla's vehicle architectures, which use a speedy charging method, currently use SiC.

Furthermore, governments' continued support of sources of renewable energy and automakers' efforts to lower the cost of manufacturing their vehicles are expected to lead to a rise in the number of hybrid and standard electric vehicles (EVs) on the road. This is made feasible in large part by the ongoing improvements in battery technology driven by consumer demand for safer, lighter, smaller batteries that charge more rapidly and last longer. As a result, silicon carbide semiconductors are ideal for plug-in hybrid (PHEV) and purely electric vehicle applications.

Market Growth Factors

Benefits of the compound or silicon carbide (SiC) semiconductors over silicon-based technology

Power semiconductors made of silicon carbide have better electronic characteristics than silicon semiconductors. They have greater electron mobility and saturation electron velocity. SiC power semiconductors have a broader energy bandgap, which makes them less susceptible to overheating. Additionally, they tend to produce less noise in electronic circuits as compared to silicon devices, which reduces power loss. Compound semiconductors, like SiC power devices, are increasingly used in microwave links, mobile phones, high-frequency radar systems, satellite communications, and other applications due to their improved qualities. The market is growing as a result of silicon carbide-based power semiconductors' superiority over silicon.

Greater adoption of 5g mobile communication technology

The massive reliance on digital infrastructure has fueled high-speed internet research and development. The 5G wireless mobile technology is expected to be rapidly implemented in established and developing countries. It is expected that this wireless standard will provide rapid data transfer speeds of up to 10 Gbps. This infrastructure is forecasted to support the growing use of smart devices and the internet of things, both of which require fast data transfers to operate effectively. Power semiconductors, particularly radio frequency (RF) semiconductors, are required for mobile communications. Therefore, during the projection period, 5G will offer a significant opportunity for the growth of the silicon carbide semiconductor devices market.

Component Outlook

Based on component, the silicon carbide semiconductor devices market is categorized into Schottky diodes, FET/MOSFET transistors, integrated circuits, rectifiers/diodes, power modules, and others. The power modules segment garnered the highest revenue share in the silicon carbide semiconductor devices market in 2021. The use of SiC as a switch for power conversion is made possible by silicon carbide power modules, which have numerous uses in the e-mobility, energy, and industrial sectors. They assist in enhancing power consumption effectiveness and lowering operating expenses.

Product Outlook

On the basis of product, the silicon carbide semiconductor devices market is divided into optoelectronic devices, power semiconductors, and frequency devices. The optoelectronic devices segment witnessed a significant revenue share in the silicon carbide semiconductor devices market in 2021. The increasing use of SiC in lighting and high-energy laser applications is responsible for the expansion of optoelectronic devices. SiC is used more frequently in optoelectronic products, including photodetectors, light-Emitting Diodes (LED), telescopes, and solar cells because of its great thermal stability. Numerous companies that make optoelectronic devices are expanding both organically and inorganically.

Wafer Size Outlook

Based on wafer size, the silicon carbide semiconductor devices market is segmented into 1 inch to 4 inches, 6 inches, 8 inches, and 10 inches & above. The 10 inches and above segment procured a remarkable growth rate in the silicon carbide semiconductor devices market in 2021. The commercial manufacture of SiC wafers is responsible for the increased use of the 10 inches and above SiC wafers. These wafers also make it possible to create Gallium Nitride (GaN) products, such as power and light-emitting diodes (LED). Moreover, the silicon carbide layer does not increase the cost of silicon wafers, which also stops silicon from diffusing into GaN.

End User Outlook

On the basis of end user, the silicon carbide semiconductor devices market in fragmented into automotive, consumer electronics, aerospace & defense, medical devices, data & communication devices, energy & power, and others. The aerospace and defense segment witnessed a promising growth rate in the silicon carbide semiconductor devices market in 2021. The segment's growth is attributed to the ability of SiC to offer lighter-weight parts for the aerospace & defense industry that will use less fuel and emit fewer emissions. For a given current and voltage rating, this material enables higher power density and higher switching in a lighter, smaller device.

Regional Outlook

On the basis of region, the silicon carbide semiconductor devices market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The Asia Pacific segment witnessed the highest revenue share in the silicon carbide semiconductor devices market in 2021. Leading market players are expected to fuel the market's expansion in the Asia Pacific region. This expansion is further aided by the rising investments in research, development, and production throughout the region. For instance, Toshiba Electronic Components and Storage said it would invest in increasing the capacity of its power component manufacturing capacity. Such measures are strengthening the position of the region in the market.

Report AttributeDetails
No. of Pages335
Forecast Period2021 - 2028
Estimated Market Value (USD) in 2021$1446.2 Million
Forecasted Market Value (USD) by 2028$5172.7 Million
Compound Annual Growth Rate20.3%
Regions CoveredGlobal

Companies Mentioned

  • Allegro Microsystems, Inc. (Sanken Electric Co., Ltd.)
  • Infineon Technologies AG
  • ROHM Co., Ltd.
  • STMicroelectronics N.V.
  • ON Semiconductor Corporation
  • TT Electronics plc.
  • Mitsubishi Electric Corporation
  • Toshiba Corporation
  • Wolfspeed, Inc.

For more information about this report visit

About is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.


Global Silicon Carbide Semiconductor Devices Market

Contact Data