Unlocking Energy Efficiency: A Deep Dive into Passive Cooling Materials and Their Expanding Applications


Dublin, Nov. 08, 2023 (GLOBE NEWSWIRE) -- The "The Global Market for Passive Cooling Materials and Technologies 2024-2034" report has been added to ResearchAndMarkets.com's offering.

This report offers a comprehensive analysis of this evolving landscape. It delves into the fundamental principles of passive cooling, including conduction, convection, and radiation, while exploring materials such as phase change materials, graphene, carbon nanotubes, aerogels, hydrogels, and metamaterials that enable passive cooling solutions.

Passive cooling, a revolutionary approach to heat dissipation without external energy input, has become pivotal across various sectors, including building cooling, cold chain logistics, electronics, textiles, and personal comfort. As the world seeks energy efficiency, temperature-controlled transport, and effective thermal management, the demand for passive cooling materials and technologies is on the rise.

Key highlights of the report include:

  • Executive summary covering market overview, drivers, emerging materials, electrification impacts, and applications roadmap.
  • In-depth analysis of materials and technologies, including thermal interface materials, phase change materials, carbon materials (e.g., graphene, nanotubes, nanodiamonds), aerogels, hydrogels, metamaterials, heat pipes, radiative cooling, and cooling paints and coatings.
  • Ten-year market forecasts, segmented by end-use industry, material type, and region, providing insights into revenue opportunities.
  • Profiles of over 200 leading companies developing and supplying passive cooling solutions, with analyses of their product portfolios, partnerships, and R&D priorities.
  • Exploration of high-potential applications in buildings, electronics, electric vehicles, apparel, cold chain, and energy storage.
  • Comparisons of competing material technologies for thermal management, benchmarking commercial products, and assessing the technical readiness of emerging solutions.

As the world seeks innovative ways to address the challenges of heat dissipation and energy efficiency, this report serves as an essential resource for professionals, researchers, investors, and decision-makers interested in harnessing the potential of passive cooling.

Key Topics Covered:

1 Research Methodology

2 Executive Summary

3 Materials and Technologies
3.1 Principles employed for cooling or prevention of heating
3.1.1 Conduction
3.1.2 Convection
3.1.3 Radiation
3.1.4 Evaporation
3.1.5 Insulation
3.1.6 Phase change
3.2 Thermal interface materials
3.2.1 Types
3.2.2 Thermal conductivity
3.2.3 Comparative properties of TIMs
3.2.4 Advantages and disadvantages of TIMs, by type
3.2.5 Thermal greases and pastes
3.2.6 Thermal gap pads
3.2.7 Thermal gap fillers
3.2.8 Thermal adhesives and potting compounds
3.2.9 Metal-based TIMs
3.2.9.1 Solders and low melting temperature alloy TIMs
3.2.9.2 Liquid metals
3.2.9.3 Solid liquid hybrid (SLH) metals
3.2.9.4 Hybrid liquid metal pastes
3.2.9.5 SLH created during chip assembly (m2TIMs)
3.3 Phase change materials
3.3.1 Key properties
3.3.2 Classification
3.3.3 Phase change cooling modes
3.3.4 Types
3.3.4.1 Organic phase change materials
3.3.4.1.1 Paraffin wax
3.3.4.1.1.1 Properties
3.3.4.1.1.2 Advantages and disadvantages
3.3.4.1.1.3 Applications of paraffin PCMs
3.3.4.1.1.4 Commercial paraffin PCM products
3.3.4.1.2 Non-Paraffins (fatty acids, esters, alcohols)
3.3.4.1.2.1 Fatty Acids
3.3.4.1.2.2 Esters
3.3.4.1.2.3 Alcohols
3.3.4.1.2.4 Glycols
3.3.4.1.2.5 Advantages and disadvantages
3.3.4.1.3 Bio-based phase change materials
3.3.4.1.3.1 Fatty Acids
3.3.4.1.3.2 Plant Oils
3.3.4.1.3.3 Agricultural Byproducts
3.3.4.1.3.4 Advantages and disadvantages
3.3.4.1.3.5 Commercial development
3.3.4.2 Inorganic phase change materials
3.3.4.2.1 Salt hydrates
3.3.4.2.1.1 Properties
3.3.4.2.1.2 Applications of Salt Hydrate PCMs
3.3.4.2.1.3 Advantages and disadvantages
3.3.4.2.1.4 Commercial Salt Hydrate PCM Products
3.3.4.2.2 Metal and metal alloy PCMs (High-temperature)
3.3.4.2.2.1 Properties
3.3.4.2.2.2 Applications
3.3.4.2.2.3 Advantages and disadvantages
3.3.4.2.2.4 Recent developments
3.3.4.3 Eutectic PCMs
3.3.4.3.1 Eutectic Mixtures
3.3.4.3.2 Examples of Eutectic Inorganic PCMs
3.3.4.3.3 Benefits
3.3.4.3.4 Applications
3.3.4.3.5 Advantages and disadvantages of eutectics
3.3.4.3.6 Recent developments
3.3.4.4 Encapsulation of PCMs
3.3.4.4.1 Benefits
3.3.4.4.2 Macroencapsulation
3.3.4.4.3 Micro/nanoencapsulation
3.3.4.4.4 Shape Stabilized PCMs
3.3.4.4.5 Commercial Encapsulation Technologies
3.3.4.4.6 Self-Assembly Encapsulation
3.3.4.5 Nanomaterial phase change materials
3.3.5 SWOT analysis
3.4 Carbon materials
3.4.1 Graphene
3.4.1.1 Properties
3.4.1.2 Graphene fillers
3.4.1.3 Graphene foam
3.4.1.4 Graphene aerogel
3.4.2 Carbon Nanotubes
3.4.2.1 Properties
3.4.3 Fullerenes
3.4.4 Nanodiamond
3.4.4.1 Properties
3.4.5 SWOT analysis
3.5 Metal Organic Frameworks (MOFs)
3.5.1 SWOT analysis
3.6 Heat pipes
3.6.1 Technology description
3.6.2 Operation and use
3.6.3 Flat plate heat pipes and derivatives
3.6.4 Emerging heat pipes
3.7 Radiative cooling
3.7.1 Heat sinks
3.7.1.1 Conventional convective heat sinks
3.7.1.2 Benefits
3.7.1.3 Applications
3.7.1.4 Commercial PCM Heat Sinks
3.7.1.5 Advanced heat sinks
3.7.2 Traditional radiative cooling
3.7.3 Radiative cooling of buildings
3.7.3.1 Passive Daytime Radiative Cooling PDRC
3.7.4 Thermal louvers
3.7.5 Anti Stokes fluorescence cooling
3.8 Hydrogels
3.8.1 Structure
3.8.1.1 Hybrid hydrogels
3.8.1.1.1 Nanocomposite hydrogels
3.8.1.1.2 Macromolecular microsphere composite (MMC) hydrogels
3.8.1.1.3 Interpenetrating Polymer Networks (IPN) hydrogels
3.8.1.1.4 Double-network (DN) hydrogels
3.8.2 Classification
3.8.2.1 Based on source
3.8.2.2 Based on composition
3.8.2.3 Based on configuration
3.8.2.4 Based on crosslinking
3.8.2.5 Size
3.8.2.5.1 Microgels
3.8.2.5.2 Nanogels
3.8.2.6 Environmental response
3.8.2.7 Degradability
3.8.3 Formulations
3.8.4 Benefits of hydrogels
3.8.5 Hydrogels for heating and cooling systems (thermal management)
3.8.5.1 Evaporative cooling
3.8.5.2 Hydroceramic hydrogel cooling
3.8.5.3 Cooling of solar panels
3.8.5.4 Hydrogel windows
3.8.5.5 Thermal management in electronics
3.9 Metamaterials
3.9.1 Types and properties
3.9.1.1 Optical Metamaterials
3.9.1.1.1 Photonic metamaterials
3.9.1.1.2 Tunable metamaterials
3.9.1.1.3 Frequency selective surface (FSS) based metamaterials
3.9.1.1.4 Plasmonic metamaterials
3.9.1.1.5 Invisibility cloaks
3.9.1.1.6 Perfect absorbers
3.9.1.1.7 Optical nanocircuits
3.9.1.1.8 Metalenses
3.9.1.1.9 Holograms
3.9.1.1.10 Applications
3.9.1.2 Electromagnetic metamaterials
3.9.1.2.1 Double negative (DNG) metamaterials
3.9.1.2.2 Single negative metamaterials
3.9.1.2.3 Electromagnetic bandgap metamaterials (EBG)
3.9.1.2.4 Bi-isotropic and bianisotropic metamaterials
3.9.1.2.5 Chiral metamaterials
3.9.1.2.6 Electromagnetic Invisibility cloak
3.9.1.3 Radio frequency (RF) metamaterials
3.9.1.3.1 RF metasurfaces
3.9.1.3.2 Frequency selective surfaces
3.9.1.3.3 Tunable RF metamaterials
3.9.1.3.4 RF metamaterials antennas
3.9.1.3.5 Absorbers
3.9.1.3.6 Luneburg lens
3.9.1.3.7 RF filters
3.9.1.3.8 Applications
3.9.1.4 Terahertz metamaterials
3.9.1.4.1 THz metasurfaces
3.9.1.4.2 Quantum metamaterials
3.9.1.4.3 Graphene metamaterials
3.9.1.4.4 Flexible/wearable THz metamaterials
3.9.1.4.5 THz modulators
3.9.1.4.6 THz switches
3.9.1.4.7 THz absorbers
3.9.1.4.8 THz antennas
3.9.1.4.9 THz imaging components
3.9.1.5 Acoustic metamaterials
3.9.1.5.1 Sonic crystals
3.9.1.5.2 Acoustic metasurfaces
3.9.1.5.3 Locally resonant materials
3.9.1.5.4 Acoustic cloaks
3.9.1.5.5 Hyperlenses
3.9.1.5.6 Sonic one-way sheets
3.9.1.5.7 Acoustic diodes
3.9.1.5.8 Acoustic absorbers
3.9.1.5.9 Applications
3.9.1.6 Tunable Metamaterials
3.9.1.6.1 Tunable electromagnetic metamaterials
3.9.1.6.2 Tunable THz metamaterials
3.9.1.6.3 Tunable acoustic metamaterials
3.9.1.6.4 Tunable optical metamaterials
3.9.1.6.5 Applications
3.9.1.7 Nonlinear metamaterials
3.9.1.8 Self-Transforming Metamaterials
3.9.1.9 Topological Metamaterials
3.9.1.10 Materials used with metamaterials
3.9.2 Thermal management
3.9.3 Cooling films
3.9.4 Optical solar reflection coatings
3.10 Passive cooling paints and coatings
3.10.1 Overview
3.10.2 Applications

4 Markets
4.1 Global revenues
4.1.1 By end use market
4.1.2 By materials
4.1.3 By end use market
4.2 Building and construction
4.2.1 Improved energy efficiency
4.2.2 Concrete
4.2.2.1 Benefits
4.2.2.2 Commercial PCM Concrete Products
4.2.3 Wallboards
4.2.3.1 Benefits
4.2.3.2 Commercial PCM Wallboards
4.2.4 Trombe Walls
4.2.4.1 Benefits
4.2.4.2 Products
4.2.5 HVAC
4.2.6 Solar Heating
4.2.7 Solar panels
4.2.8 Multi-mode ICER passive cooling
4.2.9 Panels and blankets
4.2.10 Coatings and paints
4.3 Electronics
4.3.1 Consumer devices
4.3.1.1 Smartphones and tablets
4.3.1.2 Wearable electronics
4.3.2 5G/6G Communications
4.3.2.1 Antenna
4.3.2.2 Base Band Unit (BBU)
4.3.3 Data Centers
4.3.3.1 Router, switches and line cards
4.3.3.2 Servers
4.3.3.3 Power supply converters
4.4 Apparel
4.4.1 Cooling vests
4.4.2 PCM Medical Textiles
4.5 Electric Vehicles (EV)
4.5.1 Applications
4.5.1.1 Lithium-ion batteries
4.5.1.1.1 Cell-to-pack designs
4.5.1.1.2 Cell-to-chassis/body
4.5.1.2 Power electronics
4.5.1.3 Charging stations
4.5.1.4 ADAS Sensors
4.5.1.4.1 ADAS Cameras
4.5.1.4.2 ADAS Radar
4.5.1.4.3 ADAS LiDAR
4.5.1.5 Paint additives
4.6 Cold storage transport
4.6.1.1 Temperature-controlled shipping
4.6.1.2 Commercial refrigeration
4.7 Thermal storage systems
4.7.1 Water heaters
4.7.2 Thermal batteries for water heaters and EVs
4.8 Aerogels
4.8.1 Silica aerogels
4.8.1.1 Properties
4.8.1.1.1 Thermal conductivity
4.8.1.1.2 Mechanical
4.8.1.2 Silica aerogel precursors
4.8.1.3 Products
4.8.1.3.1 Monoliths
4.8.1.3.1.1 Properties
4.8.1.3.1.2 Applications
4.8.1.3.1.3 SWOT analysis
4.8.1.3.2 Powder
4.8.1.3.2.1 Properties
4.8.1.3.2.2 Applications
4.8.1.3.2.3 SWOT analysis
4.8.1.3.3 Granules
4.8.1.3.3.1 Properties
4.8.1.3.3.2 Applications
4.8.1.3.3.3 SWOT analysis

5 Company Profiles (206 Company Profiles)

6 References

A selection of companies mentioned in this report includes

  • AOS Thermal Compounds
  • Aspen Aerogels
  • BioLife Solutions Inc.
  • Boyd Corporation
  • Cabot Corporation
  • Dow Corning
  • Enerdyne Solutions
  • Enersens
  • Fujipoly
  • Guangdong Alison Hi-Tech
  • Henkel
  • HyMet Thermal Interfaces SIA
  • i-TES
  • Momentive
  • Radi-Cool

For more information about this report visit https://www.researchandmarkets.com/r/17o100

About ResearchAndMarkets.com
ResearchAndMarkets.com is the world's leading source for international market research reports and market data. We provide you with the latest data on international and regional markets, key industries, the top companies, new products and the latest trends.

 

Coordonnées