CONCRETE BUILDINGS, PAVEMENTS AND STRUCTURES FUNCTION AS STOREHOUSES OF ATMOSPHERIC CARBON

Exposed concrete in the built environment reabsorbs atmospheric carbon.


Glendora CA, June 26, 2019 (GLOBE NEWSWIRE) --

Concrete buildings, pavements and structures are silently absorbing carbon dioxide from the atmosphere. It appears to such a degree that the built environment represents one of the world’s largest storehouses of carbon. Yet this information is currently excluded from global, national, and regional greenhouse gas accounting methods.

This is the main message from peer-reviewed scientific studies summarized in a paper released today by researchers at CalPortland Company.


Concrete, the world’s most popular building material, constitutes a large portion of the global built environment. The production of Portland cement, which is an ingredient of concrete, is commonly identified as a major contributor to greenhouse gas emissions. Often the story ends there. CO2 emissions occur when calcium carbonate, the main component of limestone, is exposed to intense heat as part of the cement production process. These emissions come from both the burning of fuels used to heat the cement kiln and from the CO2 released from the raw carbonates used to make cement. This process is called calcination.

The process of calcination is not chemically stable and therefore is reversible. CO2 in the atmosphere reacts with the hydrated cement in concrete and carbonates are regenerated. Exposed concrete in the built environment absorbs carbon dioxide through the reaction of CO2 with concrete compounds resulting in CaCO3, the main component of limestone. This reaction permanently removes CO2 from the atmosphere and binds it in a stable state within concrete. This process is called carbonation.

Considerable attention has been paid to quantifying the industrial process emissions from cement production, however the natural reversal process of the uptake of CO2 during concrete’s complete material life phases is just beginning to receive the consideration it deserves. 

“It is time to further examine the value of concrete in the built environment as a significant carbon sink”, said Allen Hamblen, President/CEO CalPortland. “To do so accurately, we must specifically look at the net effects of CO2 sequestration in concrete and evaluate all structures over their lifetime within a circular economy”, he added.

In the past few decades there have been many studies that have examined factors affecting the capacity of concrete to absorb carbon dioxide from the atmosphere. One of the more recent studies from the Swedish Environmental Research Institute (SERI) examined data from several European countries to develop practical models to gauge the extent of CO2 uptake by concrete globally in the built environment.

The researchers developed several approaches and statistical models of increasing complexity to come up with valid estimates of general CO2 uptake by concrete.

The Tier 1 model provides a simplified approach for use on a national basis relative to the annual emissions associated with cement production in the same year.  It has two options for the calculation of CO2 uptake. Option A uses the mean value of 20% for estimating uptake of CO2 over the life of concrete structures. Option B uses this mean value minus a standard deviation factor for estimating CO2 uptake resulting in 15% uptake.  

The standard deviation adjustments are designed to account for various factors that could affect the rate of carbonation. Such factors include the length of time of exposure to the atmosphere, humidity, porosity of the concrete, cement type, and water to cement ratios.

Many organizations and companies are actively working on measures to reduce greenhouse gas emissions. Having a better appreciation of the level of CO2 uptake by concrete can help us develop better strategies to mitigate the impacts of climate change. As this paper and several noted studies clearly show, carbonation in cement products represents a substantial carbon sink that is not currently considered in emissions calculations.

The efforts of CalPortland’s researchers illustrate that to understand the effects of greenhouse gases associated with the built environment, focused studies on CO2 uptake in concrete within the context of its overall Life Cycle Assessment (LCA) are necessary.

To read or download the full paper, Incorporating the Effect of Carbonation in Concrete Life Cycle Assessment, please follow this link : https://www.calportland.com/incorporating-the-effect-of-carbonation-in-concrete-life-cycle-assessment/

About CalPortland

CalPortland Company is a major producer of cement, ready mixed concrete, aggregates, concrete products and asphalt in the western United States and Canada. Founded in 1891 with the principle of providing unsurpassed quality, CalPortland remains a leader in the industry through its commitment to quality, safety, customer service, technical excellence and environmental leadership. The company maintains its headquarters in Glendora, California and operates in the Western U.S. and two Canadian Provinces. For more information about CalPortland Company, visit www.calportland.com.

Attachment


            

Contact Data